Ly-3161
Radiocarbon date from
Grappin,
c. 18832–18298 cal BP
Record created in XRONOS on 2022-12-02 00:50:45 UTC.
Last updated on 2022-12-02 00:50:45 UTC.
See changelog for details.
Contributors: XRONOS development team
Contributors: XRONOS development team
Measurement
- Age (uncal BP)
- 15335
- Error (±)
- 100
- Lab
- NA
- Method
- 14C
- Sample material
- bone
- Sample taxon
- NA
Calibration
- Calibration curve
- IntCal20 (Reimer et al. 2020)
- Calibrated age (2σ, cal BP)
-
- 18832–18590
- 18508–18298
Context
- Site
- Grappin
- Context
- habitat
- Sample position
- NA
- Sample coordinates
- NA
Bibliographic references (13)
- No bibliographic information available. [Cupillard and Welte 2006]
- PACEA Geo-Referenced Radiocarbon Database. (2011). PaleoAnthropology, 2011, 1–12. [PACEA]
- No bibliographic information available. [Evin et al. 1973b]
- No bibliographic information available. [Delibrias and Evin 1980]
- No bibliographic information available. [Julien M. 1996. Eraul 76:: 203-226. Debout G. 2012. QI]
- No bibliographic information available. [van Willigen 2006]
- No bibliographic information available. [Maniatis et al. 2016: Table 1]
- No bibliographic information available. [Cupillard C 2006. L'Anthropologie 110: 624-683. Cupillard C. 2013. SPF Memoire 56: 355.]
- No bibliographic information available. [CONTEXT CalPal Banadora]
- Vermeersch, P. M. (2020). Radiocarbon Palaeolithic Europe Database: A Regularly Updated Dataset of the Radiometric Data Regarding the Palaeolithic of Europe, Siberia Included. Data Brief, 31, 105793. https://doi.org/10.1016/j.dib.2020.105793 [Vermeersch 2020]
- No bibliographic information available. [Larsson 2019]
- Capuzzo, G., Boaretto, E., & Barceló, J. A. (2014). EUBAR: A Database of 14C Measurements for the European Bronze Age. A Bayesian Analysis of 14C-Dated Archaeological Contexts from Northern Italy and Southern France. Radiocarbon, 56(2), 851–869. https://doi.org/10.2458/56.17453 [EUBAR]
- No bibliographic information available. [Cupillard C. 2013. SPF Memoire 56: 355.]
@misc{Cupillard and Welte 2006,
}
@article{dErricoEtAl2011,
title = {PACEA Geo-Referenced Radiocarbon Database},
author = {},
date = {2011},
journaltitle = {PaleoAnthropology},
volume = {2011},
pages = {1–12},
abstract = {Numerous Paleolithic radiocarbon databases exist, but their geographic and temporal scopes are diverse and their availability variable. With this paper we make available to the scientific community a georeferenced database of radiocarbon ages for the late Middle Paleolithic, Upper Paleolithic, and initial Holocene in Europe. The PACEA radiocarbon database consists of conventional and AMS 14C age determinations from archaeological sites in Europe that fall within Marine Isotope Stages (MIS) 3–1. In all, we have assembled 6,019 radiocarbon ages (conventional=3,820, AMS=2,176, unspecified=23) from a total of 1,208 sites, along with comprehensive contextual information on the dated samples.},
keywords = {⛔ No DOI found},
file = {/home/joeroe/g/work/library/2011/d’Errico_et_al_2011.pdf}
}
@misc{Evin et al. 1973b,
}
@misc{Delibrias and Evin 1980,
}
@misc{Julien M. 1996. Eraul 76:: 203-226. Debout G. 2012. QI,
}
@misc{van Willigen 2006,
}
@misc{Maniatis et al. 2016: Table 1,
}
@misc{Cupillard C 2006. L'Anthropologie 110: 624-683. Cupillard C. 2013. SPF Memoire 56: 355.,
}
@misc{CONTEXT CalPal Banadora,
}
@article{Vermeersch2020,
title = {Radiocarbon Palaeolithic Europe Database: A Regularly Updated Dataset of the Radiometric Data Regarding the Palaeolithic of Europe, Siberia Included},
author = {Vermeersch, Pierre M},
year = {2020},
month = {aug},
journal = {Data Brief},
volume = {31},
pages = {105793},
issn = {2352-3409},
doi = {10.1016/j.dib.2020.105793},
abstract = {At the Berlin INQUA Congress (1995) a working group, European Late Pleistocene Isotopic Stages 2 & 3: Humans, Their Ecology & Cultural Adaptations, was established under the direction of J. Renault-Miskovsky (Institut de Paléontologie humaine, Paris). One of the objectives was building a database of the human occupation of Europe during this period. The database has been enlarged and now includes Lower, Middle and Upper Palaeolithic sites connecting them to their environmental conditions and the available chronometric dating. From version 14 on, only sites with chronometric data were included. In this database we have collected the available radiometric data from literature and from other more restricted databases. We try to incorporate newly published chronometric dates, collected from all kind of available publications. Only dates older than 9500 uncalibrated BP, correlated with a "cultural" level obtained by scientific excavations of European (Asian Russian Federation included) Palaeolithic sites, have been included. The dates are complemented with information related to cultural remains, stratigraphic, sedimentologic and palaeontologic information within a Microsoft Access database. For colleagues mainly interested in a list of all chronometric dates an Microsoft Excel list (with no details) is available (Tab. 1). A file, containing all sites with known coordinates, that can be opened for immediate use in Google Earth is available as a *.kmz file. It will give the possibility to introduce (by file open) in Google Earth the whole site list in "My Places". The database, version 27 (first version was available in 2002), contains now 13,202 site forms, (most of them with their geographical coordinates), comprising 17,022 radiometric data: Conv. 14C and AMS 14C (13,144 items), TL (678 items), OSL (1050 items), ESR, Th/U and AAR (2150 items) from the Lower, Middle and Upper Palaeolithic. All 14C dates are conventional dates BP. This improved version 27 replaces the older version 26.},
month_numeric = {8}
}
@misc{Larsson 2019,
}
@article{CapuzzoEtAl2014,
title = {EUBAR: A Database of 14C Measurements for the European Bronze Age. A Bayesian Analysis of 14C-Dated Archaeological Contexts from Northern Italy and Southern France},
shorttitle = {EUBAR},
author = {Capuzzo, Giacomo and Boaretto, Elisabetta and Barceló, Juan A.},
year = {2014},
month = {jan},
journal = {Radiocarbon},
volume = {56},
number = {2},
pages = {851–869},
issn = {0033-8222, 1945-5755},
doi = {10.2458/56.17453},
abstract = {The chronological framework of European protohistory is mostly a relative chronology based on typology and stratigraphic data. Synchronization of different time periods suffers from a lack of absolute dates; therefore, disagreements between different chronological schemes are difficult to reconcile. An alternative approach was applied in this study to build a more precise and accurate absolute chronology. To the best of our knowledge, we have collected all the published 14C dates for the archaeological sites in the region from the Ebro River (Spain) to the Middle Danube Valley (Austria) for the period 1800–750 BC. The available archaeological information associated with the 14C dates was organized in a database that totaled more than 1600 14C dates. In order to build an accurate and precise chronology, quality selection rules have been applied to the 14C dates based on both archaeological context and analytical quality. Using the OxCal software and Bayesian analysis, several 14C time sequences were created following the archaeological data and different possible scenarios were tested in northern Italy and southern France.},
langid = {english},
month_numeric = {1}
}
@misc{Cupillard C. 2013. SPF Memoire 56: 355.,
}
{"bibtex_key":"Cupillard and Welte 2006","bibtex_type":"misc"}[{"bibtex_key":"dErricoEtAl2011","bibtex_type":"article","title":"{PACEA Geo-Referenced Radiocarbon Database}","author":"{}","date":"{2011}","journaltitle":"{PaleoAnthropology}","volume":"{2011}","pages":"{1–12}","abstract":"{Numerous Paleolithic radiocarbon databases exist, but their geographic and temporal scopes are diverse and their availability variable. With this paper we make available to the scientific community a georeferenced database of radiocarbon ages for the late Middle Paleolithic, Upper Paleolithic, and initial Holocene in Europe. The PACEA radiocarbon database consists of conventional and AMS 14C age determinations from archaeological sites in Europe that fall within Marine Isotope Stages (MIS) 3–1. In all, we have assembled 6,019 radiocarbon ages (conventional=3,820, AMS=2,176, unspecified=23) from a total of 1,208 sites, along with comprehensive contextual information on the dated samples.}","keywords":"{⛔ No DOI found}","file":"{/home/joeroe/g/work/library/2011/d’Errico_et_al_2011.pdf}"}]{"bibtex_key":"Evin et al. 1973b","bibtex_type":"misc"}{"bibtex_key":"Delibrias and Evin 1980","bibtex_type":"misc"}{"bibtex_key":"Julien M. 1996. Eraul 76:: 203-226. Debout G. 2012. QI","bibtex_type":"misc"}{"bibtex_key":"van Willigen 2006","bibtex_type":"misc"}{"bibtex_key":"Maniatis et al. 2016: Table 1","bibtex_type":"misc"}{"bibtex_key":"Cupillard C 2006. L'Anthropologie 110: 624-683. Cupillard C. 2013. SPF Memoire 56: 355.","bibtex_type":"misc"}{"bibtex_key":"CONTEXT CalPal Banadora","bibtex_type":"misc"}[{"bibtex_key":"Vermeersch2020","bibtex_type":"article","title":"{Radiocarbon Palaeolithic Europe Database: A Regularly Updated Dataset of the Radiometric Data Regarding the Palaeolithic of Europe, Siberia Included}","author":"{Vermeersch, Pierre M}","year":"{2020}","month":"{aug}","journal":"{Data Brief}","volume":"{31}","pages":"{105793}","issn":"{2352-3409}","doi":"{10.1016/j.dib.2020.105793}","abstract":"{At the Berlin INQUA Congress (1995) a working group, European Late Pleistocene Isotopic Stages 2 & 3: Humans, Their Ecology & Cultural Adaptations, was established under the direction of J. Renault-Miskovsky (Institut de Paléontologie humaine, Paris). One of the objectives was building a database of the human occupation of Europe during this period. The database has been enlarged and now includes Lower, Middle and Upper Palaeolithic sites connecting them to their environmental conditions and the available chronometric dating. From version 14 on, only sites with chronometric data were included. In this database we have collected the available radiometric data from literature and from other more restricted databases. We try to incorporate newly published chronometric dates, collected from all kind of available publications. Only dates older than 9500 uncalibrated BP, correlated with a \"cultural\" level obtained by scientific excavations of European (Asian Russian Federation included) Palaeolithic sites, have been included. The dates are complemented with information related to cultural remains, stratigraphic, sedimentologic and palaeontologic information within a Microsoft Access database. For colleagues mainly interested in a list of all chronometric dates an Microsoft Excel list (with no details) is available (Tab. 1). A file, containing all sites with known coordinates, that can be opened for immediate use in Google Earth is available as a *.kmz file. It will give the possibility to introduce (by file open) in Google Earth the whole site list in \"My Places\". The database, version 27 (first version was available in 2002), contains now 13,202 site forms, (most of them with their geographical coordinates), comprising 17,022 radiometric data: Conv. 14C and AMS 14C (13,144 items), TL (678 items), OSL (1050 items), ESR, Th/U and AAR (2150 items) from the Lower, Middle and Upper Palaeolithic. All 14C dates are conventional dates BP. This improved version 27 replaces the older version 26.}","month_numeric":"{8}"}]{"bibtex_key":"Larsson 2019","bibtex_type":"misc"}[{"bibtex_key":"CapuzzoEtAl2014","bibtex_type":"article","title":"{EUBAR: A Database of 14C Measurements for the European Bronze Age. A Bayesian Analysis of 14C-Dated Archaeological Contexts from Northern Italy and Southern France}","shorttitle":"{EUBAR}","author":"{Capuzzo, Giacomo and Boaretto, Elisabetta and Barceló, Juan A.}","year":"{2014}","month":"{jan}","journal":"{Radiocarbon}","volume":"{56}","number":"{2}","pages":"{851–869}","issn":"{0033-8222, 1945-5755}","doi":"{10.2458/56.17453}","abstract":"{The chronological framework of European protohistory is mostly a relative chronology based on typology and stratigraphic data. Synchronization of different time periods suffers from a lack of absolute dates; therefore, disagreements between different chronological schemes are difficult to reconcile. An alternative approach was applied in this study to build a more precise and accurate absolute chronology. To the best of our knowledge, we have collected all the published 14C dates for the archaeological sites in the region from the Ebro River (Spain) to the Middle Danube Valley (Austria) for the period 1800–750 BC. The available archaeological information associated with the 14C dates was organized in a database that totaled more than 1600 14C dates. In order to build an accurate and precise chronology, quality selection rules have been applied to the 14C dates based on both archaeological context and analytical quality. Using the OxCal software and Bayesian analysis, several 14C time sequences were created following the archaeological data and different possible scenarios were tested in northern Italy and southern France.}","langid":"{english}","month_numeric":"{1}"}]{"bibtex_key":"Cupillard C. 2013. SPF Memoire 56: 355.","bibtex_type":"misc"}
---
:bibtex_key: Cupillard and Welte 2006
:bibtex_type: :misc
---
- :bibtex_key: dErricoEtAl2011
:bibtex_type: :article
:title: "{PACEA Geo-Referenced Radiocarbon Database}"
:author: "{}"
:date: "{2011}"
:journaltitle: "{PaleoAnthropology}"
:volume: "{2011}"
:pages: "{1–12}"
:abstract: "{Numerous Paleolithic radiocarbon databases exist, but their geographic
and temporal scopes are diverse and their availability variable. With this paper
we make available to the scientific community a georeferenced database of radiocarbon
ages for the late Middle Paleolithic, Upper Paleolithic, and initial Holocene
in Europe. The PACEA radiocarbon database consists of conventional and AMS 14C
age determinations from archaeological sites in Europe that fall within Marine
Isotope Stages (MIS) 3–1. In all, we have assembled 6,019 radiocarbon ages (conventional=3,820,
AMS=2,176, unspecified=23) from a total of 1,208 sites, along with comprehensive
contextual information on the dated samples.}"
:keywords: "{⛔ No DOI found}"
:file: "{/home/joeroe/g/work/library/2011/d’Errico_et_al_2011.pdf}"
---
:bibtex_key: Evin et al. 1973b
:bibtex_type: :misc
---
:bibtex_key: Delibrias and Evin 1980
:bibtex_type: :misc
---
:bibtex_key: 'Julien M. 1996. Eraul 76:: 203-226. Debout G. 2012. QI'
:bibtex_type: :misc
---
:bibtex_key: van Willigen 2006
:bibtex_type: :misc
---
:bibtex_key: 'Maniatis et al. 2016: Table 1'
:bibtex_type: :misc
---
:bibtex_key: 'Cupillard C 2006. L''Anthropologie 110: 624-683. Cupillard C. 2013.
SPF Memoire 56: 355.'
:bibtex_type: :misc
---
:bibtex_key: CONTEXT CalPal Banadora
:bibtex_type: :misc
---
- :bibtex_key: Vermeersch2020
:bibtex_type: :article
:title: "{Radiocarbon Palaeolithic Europe Database: A Regularly Updated Dataset
of the Radiometric Data Regarding the Palaeolithic of Europe, Siberia Included}"
:author: "{Vermeersch, Pierre M}"
:year: "{2020}"
:month: "{aug}"
:journal: "{Data Brief}"
:volume: "{31}"
:pages: "{105793}"
:issn: "{2352-3409}"
:doi: "{10.1016/j.dib.2020.105793}"
:abstract: '{At the Berlin INQUA Congress (1995) a working group, European Late
Pleistocene Isotopic Stages 2 & 3: Humans, Their Ecology & Cultural Adaptations,
was established under the direction of J. Renault-Miskovsky (Institut de Paléontologie
humaine, Paris). One of the objectives was building a database of the human occupation
of Europe during this period. The database has been enlarged and now includes
Lower, Middle and Upper Palaeolithic sites connecting them to their environmental
conditions and the available chronometric dating. From version 14 on, only sites
with chronometric data were included. In this database we have collected the available
radiometric data from literature and from other more restricted databases. We
try to incorporate newly published chronometric dates, collected from all kind
of available publications. Only dates older than 9500 uncalibrated BP, correlated
with a "cultural" level obtained by scientific excavations of European (Asian
Russian Federation included) Palaeolithic sites, have been included. The dates
are complemented with information related to cultural remains, stratigraphic,
sedimentologic and palaeontologic information within a Microsoft Access database.
For colleagues mainly interested in a list of all chronometric dates an Microsoft
Excel list (with no details) is available (Tab. 1). A file, containing all sites
with known coordinates, that can be opened for immediate use in Google Earth is
available as a *.kmz file. It will give the possibility to introduce (by file
open) in Google Earth the whole site list in "My Places". The database, version
27 (first version was available in 2002), contains now 13,202 site forms, (most
of them with their geographical coordinates), comprising 17,022 radiometric data:
Conv. 14C and AMS 14C (13,144 items), TL (678 items), OSL (1050 items), ESR, Th/U
and AAR (2150 items) from the Lower, Middle and Upper Palaeolithic. All 14C dates
are conventional dates BP. This improved version 27 replaces the older version
26.}'
:month_numeric: "{8}"
---
:bibtex_key: Larsson 2019
:bibtex_type: :misc
---
- :bibtex_key: CapuzzoEtAl2014
:bibtex_type: :article
:title: "{EUBAR: A Database of 14C Measurements for the European Bronze Age. A Bayesian
Analysis of 14C-Dated Archaeological Contexts from Northern Italy and Southern
France}"
:shorttitle: "{EUBAR}"
:author: "{Capuzzo, Giacomo and Boaretto, Elisabetta and Barceló, Juan A.}"
:year: "{2014}"
:month: "{jan}"
:journal: "{Radiocarbon}"
:volume: "{56}"
:number: "{2}"
:pages: "{851–869}"
:issn: "{0033-8222, 1945-5755}"
:doi: "{10.2458/56.17453}"
:abstract: "{The chronological framework of European protohistory is mostly a relative
chronology based on typology and stratigraphic data. Synchronization of different
time periods suffers from a lack of absolute dates; therefore, disagreements between
different chronological schemes are difficult to reconcile. An alternative approach
was applied in this study to build a more precise and accurate absolute chronology.
To the best of our knowledge, we have collected all the published 14C dates for
the archaeological sites in the region from the Ebro River (Spain) to the Middle
Danube Valley (Austria) for the period 1800–750 BC. The available archaeological
information associated with the 14C dates was organized in a database that totaled
more than 1600 14C dates. In order to build an accurate and precise chronology,
quality selection rules have been applied to the 14C dates based on both archaeological
context and analytical quality. Using the OxCal software and Bayesian analysis,
several 14C time sequences were created following the archaeological data and
different possible scenarios were tested in northern Italy and southern France.}"
:langid: "{english}"
:month_numeric: "{1}"
---
:bibtex_key: 'Cupillard C. 2013. SPF Memoire 56: 355.'
:bibtex_type: :misc