Kitsos Cave
Archaeological site
in Greece
Record created in XRONOS on 2022-12-02 00:50:45 UTC.
Last updated on 2022-12-02 00:50:45 UTC.
See changelog for details.
Contributors: XRONOS development team
Contributors: XRONOS development team
Location
Lab ID | Context | Material | Taxon | Method | Uncalibrated age | Calibrated age | References |
---|---|---|---|---|---|---|---|
Gif-1283 | charcoal | NA | NA | 1900±140 BP | Facorellis 2013 Bird et al. 2022 | ||
Gif-1283 | charcoal | NA | 14C | 1900±140 BP | Facorellis 2013 Weninger 2022 | ||
Gif-1610 | Layer 3, Section 2. From the Kitsos Cave. | charcoal | From a hearth in a homogenous ashlayer. | NA | 5350±200 BP | Breunig 1987, 92 Hinz et al. 2012 | |
Gif-1610 | charcoal | NA | NA | 5350±200 BP | Facorellis 2013 Bird et al. 2022 | ||
Gif-1610 | charcoal | NA | 14C | 5350±200 BP | Facorellis 2013 Weninger 2022 | ||
Gif-1610 | Layer 3, Sounding 2, hearth | Charcoal | NA | NA | 5350±200 BP | Breunig 1987: 92, Sampson et al. 1998: 281 | |
Gif-1280 | charcoal | NA | NA | 5470±150 BP | Facorellis 2013 Bird et al. 2022 | ||
Gif-1280 | charcoal | NA | 14C | 5470±150 BP | Facorellis 2013 Weninger 2022 | ||
Gif-1280 | Layer 3a, Section 1. From the Kitsos Cave. | charcoal | From a layer with sea shells and burned bones from goat and rabbit. | NA | 5470±150 BP | Breunig 1987, 92 Hinz et al. 2012 | |
Gif-1280 | Layer 3a, Sounding 1, dwelling level | Charcoal | NA | NA | 5470±150 BP | Breunig 1987: 92, Sampson et al. 1998: 281 | |
Gif-1670 | Layer 4, Sounding 2, hearth Φ 3, dwelling level | Charcoal | NA | NA | 5550±150 BP | Breunig 1987: 92, Sampson et al. 1998: 281 | |
Gif-1670 | charcoal | NA | NA | 5550±150 BP | Facorellis 2013 Bird et al. 2022 | ||
Gif-4440 | NA | NA | 5550±120 BP | Coleman 1992: 210 Bird et al. 2022 | |||
Gif-1670 | Layer 4, Section 2. From the Kitsos Cave. | charcoal | From a firehearth. | NA | 5550±150 BP | Breunig 1987, 92 Hinz et al. 2012 | |
Gif-1670 | charcoal | NA | 14C | 5550±150 BP | Facorellis 2013 Weninger 2022 | ||
Gif-4440 | Layer 3 | NA | NA | 5550±120 BP | Coleman 1992: 210 | ||
Gif-1832 | charcoal | NA | NA | 5650±130 BP | Facorellis 2013 Bird et al. 2022 | ||
Gif-1832 | Layer 4, fireplace | Charcoal | NA | NA | 5650±130 BP | Breunig 1987: 92, Sampson et al. 1998: 281 | |
Gif-1832 | charcoal | NA | 14C | 5650±130 BP | Facorellis 2013 Weninger 2022 | ||
Gif-1832 | Layer 4. From the Kitsos Cave. | charcoal | From a firehearth with human and animal bones, Pottery and stone and bonetools. | NA | 5650±130 BP | Breunig 1987, 92 Hinz et al. 2012 |
Classification | Estimated age | References |
---|---|---|
Tsangli | NA | NA |
Neolithic | NA | Facorellis 2013 |
Neolithic | NA | Facorellis 2013 |
LN II | NA | NA |
Neolithic | NA | Facorellis 2013 |
LN I | NA | NA |
Neolithic | NA | Facorellis 2013 |
LN I | NA | NA |
Neolithikum | NA | Breunig 1987, 92 |
Final | NA | Breunig 1987, 92 |
Neolithikum | NA | NA |
Neolithikum | NA | Breunig 1987, 92 |
Neolithikum | NA | Breunig 1987, 92 |
Neolithikum | NA | Breunig 1987, 92 |
Neolithikum | NA | Breunig 1987, 92 |
Neolithikum | NA | Breunig 1987, 93 |
Bibliographic references
- No bibliographic information available. [Breunig 1987: 92]
- No bibliographic information available. [Sampson et al. 1998: 281]
- No bibliographic information available. [Coleman 1992: 210]
- No bibliographic information available. [Breunig 1987: 92, Sampson et al. 1998: 281]
- No bibliographic information available. [Facorellis 2013]
- No bibliographic information available. [Breunig 1987, 92]
- No bibliographic information available. [Breunig 1987, 93]
- http://www.14sea.org/ [14SEA]
- Weninger, B. (2022). CalPal Edition 2022.9. Zenodo. https://doi.org/1010.5281/zenodo.7422618 [CalPal2022]
- Hinz, M., Furholt, M., Müller, J., Raetzel-Fabian, D., Rinne, C., Sjögren, K.-G., & Wotzka, H.-P. (2012). RADON - Radiocarbon Dates Online 2012. Central European Database of 14C Dates for the Neolithic and the Early Bronze Age. Journal of Neolithic Archaeology, 14, 1–4. https://www.jna.uni-kiel.de/index.php/jna/article/view/65/116 [RADON]
- Bird, D., Miranda, L., Vander Linden, M., Robinson, E., Bocinsky, R. K., Nicholson, C., Capriles, J. M., Finley, J. B., Gayo, E. M., Gil, A., d’Alpoim Guedes, J., Hoggarth, J. A., Kay, A., Loftus, E., Lombardo, U., Mackie, M., Palmisano, A., Solheim, S., Kelly, R. L., & Freeman, J. (2022). P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates. Scientific Data, 9(1), 27. https://doi.org/10.1038/s41597-022-01118-7 [p3k14c]
@misc{Breunig 1987: 92,
}
@misc{Sampson et al. 1998: 281,
}
@misc{Coleman 1992: 210,
}
@misc{Breunig 1987: 92, Sampson et al. 1998: 281,
}
@misc{Facorellis 2013,
}
@misc{Breunig 1987, 92,
}
@misc{Breunig 1987, 93,
}
@misc{14SEA,
url = {http://www.14sea.org/},
note = {Reingruber, A., and Thissen, L. (2017). The 14SEA Project: A 14C database for Southeast Europe and Anatolia (10,000–3000 calBC). Updated 2017-01-31. http://www.14sea.org/index.html}
}
@misc{CalPal,
title = {CalPal Edition 2022.9},
author = {Weninger, Bernie},
year = {2022},
month = {sep},
doi = {1010.5281/zenodo.7422618},
url = {https://zenodo.org/record/7422618},
abstract = {CalPal is scientific freeware for 14C-based chronological research for Holocene and Palaeolithic Archaeology.},
copyright = {Creative Commons Attribution 4.0 International, Open Access},
howpublished = {Zenodo},
month_numeric = {9}
}
@article{RADON,
title = {RADON - Radiocarbon Dates Online 2012. Central European Database of 14C Dates for the Neolithic and the Early Bronze Age.},
author = {Hinz, Martin and Furholt, Martin and Müller, Johannes and Raetzel-Fabian, Dirk and Rinne, Christophe and Sjögren, Karl-Göran and Wotzka, Hans-Peter},
date = {2012},
journaltitle = {Journal of Neolithic Archaeology},
volume = {14},
pages = {1–4},
url = {https://www.jna.uni-kiel.de/index.php/jna/article/view/65/116},
abstract = {In order to understand the dynamics of cultural phenomena, scientific dating in archaeology is an increasingly indispensable tool. Only by dating independently of typology is it possible to understand typological development itself (Müller 2004). Here radiometric dating methods, especially those based on carbon isotopy, still play the most important role. For evaluations exceeding the intra-site level, it is particularly important that such data is collected in large numbers and that the dates are easily accessible. Also, new statistical analyses, such as sequential calibration based on Bayesian methods, do not require single dates, but rather demand a greater number. By their combination significantly more elaborate results can be achieved compared to the results from conventional evaluation (e. g. Whittle et al. 2011). A second premise of RADON is that of „Open Access“. This approach continues to be applied in the international research community, which we welcome as a highly positive development. The radiocarbon database RADON has been committed to this principle for more than 12 years. In this database 14C data – primarily of the Neolithic of Central Europe and Southern Scandinavia – is collected and successively augmented.}
}
@article{p3k14c,
title = {P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates},
author = {Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob},
year = {2022},
month = {jan},
journal = {Scientific Data},
volume = {9},
number = {1},
pages = {27},
publisher = {Nature Publishing Group},
issn = {2052-4463},
doi = {10.1038/s41597-022-01118-7},
abstract = {Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.},
copyright = {2022 The Author(s)},
langid = {english},
keywords = {Archaeology,Chemistry},
month_numeric = {1}
}
{"bibtex_key":"Breunig 1987: 92","bibtex_type":"misc"}{"bibtex_key":"Sampson et al. 1998: 281","bibtex_type":"misc"}{"bibtex_key":"Coleman 1992: 210","bibtex_type":"misc"}{"bibtex_key":"Breunig 1987: 92, Sampson et al. 1998: 281","bibtex_type":"misc"}{"bibtex_key":"Facorellis 2013","bibtex_type":"misc"}{"bibtex_key":"Breunig 1987, 92","bibtex_type":"misc"}{"bibtex_key":"Breunig 1987, 93","bibtex_type":"misc"}[{"bibtex_key":"14SEA","bibtex_type":"misc","url":"{http://www.14sea.org/}","note":"{Reingruber, A., and Thissen, L. (2017). The 14SEA Project: A 14C database for Southeast Europe and Anatolia (10,000–3000 calBC). Updated 2017-01-31. http://www.14sea.org/index.html}"}][{"bibtex_key":"CalPal","bibtex_type":"misc","title":"{CalPal Edition 2022.9}","author":"{Weninger, Bernie}","year":"{2022}","month":"{sep}","doi":"{1010.5281/zenodo.7422618}","url":"{https://zenodo.org/record/7422618}","abstract":"{CalPal is scientific freeware for 14C-based chronological research for Holocene and Palaeolithic Archaeology.}","copyright":"{Creative Commons Attribution 4.0 International, Open Access}","howpublished":"{Zenodo}","month_numeric":"{9}"}][{"bibtex_key":"RADON","bibtex_type":"article","title":"{RADON - Radiocarbon Dates Online 2012. Central European Database of 14C Dates for the Neolithic and the Early Bronze Age.}","author":"{Hinz, Martin and Furholt, Martin and Müller, Johannes and Raetzel-Fabian, Dirk and Rinne, Christophe and Sjögren, Karl-Göran and Wotzka, Hans-Peter}","date":"{2012}","journaltitle":"{Journal of Neolithic Archaeology}","volume":"{14}","pages":"{1–4}","url":"{https://www.jna.uni-kiel.de/index.php/jna/article/view/65/116}","abstract":"{In order to understand the dynamics of cultural phenomena, scientific dating in archaeology is an increasingly indispensable tool. Only by dating independently of typology is it possible to understand typological development itself (Müller 2004). Here radiometric dating methods, especially those based on carbon isotopy, still play the most important role. For evaluations exceeding the intra-site level, it is particularly important that such data is collected in large numbers and that the dates are easily accessible. Also, new statistical analyses, such as sequential calibration based on Bayesian methods, do not require single dates, but rather demand a greater number. By their combination significantly more elaborate results can be achieved compared to the results from conventional evaluation (e. g. Whittle et al. 2011). A second premise of RADON is that of „Open Access“. This approach continues to be applied in the international research community, which we welcome as a highly positive development. The radiocarbon database RADON has been committed to this principle for more than 12 years. In this database 14C data – primarily of the Neolithic of Central Europe and Southern Scandinavia – is collected and successively augmented.}"}][{"bibtex_key":"p3k14c","bibtex_type":"article","title":"{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}","author":"{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob}","year":"{2022}","month":"{jan}","journal":"{Scientific Data}","volume":"{9}","number":"{1}","pages":"{27}","publisher":"{Nature Publishing Group}","issn":"{2052-4463}","doi":"{10.1038/s41597-022-01118-7}","abstract":"{Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.}","copyright":"{2022 The Author(s)}","langid":"{english}","keywords":"{Archaeology,Chemistry}","month_numeric":"{1}"}]
---
:bibtex_key: 'Breunig 1987: 92'
:bibtex_type: :misc
---
:bibtex_key: 'Sampson et al. 1998: 281'
:bibtex_type: :misc
---
:bibtex_key: 'Coleman 1992: 210'
:bibtex_type: :misc
---
:bibtex_key: 'Breunig 1987: 92, Sampson et al. 1998: 281'
:bibtex_type: :misc
---
:bibtex_key: Facorellis 2013
:bibtex_type: :misc
---
:bibtex_key: Breunig 1987, 92
:bibtex_type: :misc
---
:bibtex_key: Breunig 1987, 93
:bibtex_type: :misc
---
- :bibtex_key: 14SEA
:bibtex_type: :misc
:url: "{http://www.14sea.org/}"
:note: "{Reingruber, A., and Thissen, L. (2017). The 14SEA Project: A 14C database
for Southeast Europe and Anatolia (10,000–3000 calBC). Updated 2017-01-31. http://www.14sea.org/index.html}"
---
- :bibtex_key: CalPal
:bibtex_type: :misc
:title: "{CalPal Edition 2022.9}"
:author: "{Weninger, Bernie}"
:year: "{2022}"
:month: "{sep}"
:doi: "{1010.5281/zenodo.7422618}"
:url: "{https://zenodo.org/record/7422618}"
:abstract: "{CalPal is scientific freeware for 14C-based chronological research
for Holocene and Palaeolithic Archaeology.}"
:copyright: "{Creative Commons Attribution 4.0 International, Open Access}"
:howpublished: "{Zenodo}"
:month_numeric: "{9}"
---
- :bibtex_key: RADON
:bibtex_type: :article
:title: "{RADON - Radiocarbon Dates Online 2012. Central European Database of 14C
Dates for the Neolithic and the Early Bronze Age.}"
:author: "{Hinz, Martin and Furholt, Martin and Müller, Johannes and Raetzel-Fabian,
Dirk and Rinne, Christophe and Sjögren, Karl-Göran and Wotzka, Hans-Peter}"
:date: "{2012}"
:journaltitle: "{Journal of Neolithic Archaeology}"
:volume: "{14}"
:pages: "{1–4}"
:url: "{https://www.jna.uni-kiel.de/index.php/jna/article/view/65/116}"
:abstract: "{In order to understand the dynamics of cultural phenomena, scientific
dating in archaeology is an increasingly indispensable tool. Only by dating independently
of typology is it possible to understand typological development itself (Müller
2004). Here radiometric dating methods, especially those based on carbon isotopy,
still play the most important role. For evaluations exceeding the intra-site level,
it is particularly important that such data is collected in large numbers and
that the dates are easily accessible. Also, new statistical analyses, such as
sequential calibration based on Bayesian methods, do not require single dates,
but rather demand a greater number. By their combination significantly more elaborate
results can be achieved compared to the results from conventional evaluation (e.
g. Whittle et al. 2011). A second premise of RADON is that of „Open Access“. This
approach continues to be applied in the international research community, which
we welcome as a highly positive development. The radiocarbon database RADON has
been committed to this principle for more than 12 years. In this database 14C
data – primarily of the Neolithic of Central Europe and Southern Scandinavia –
is collected and successively augmented.}"
---
- :bibtex_key: p3k14c
:bibtex_type: :article
:title: "{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}"
:author: "{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick
and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson
Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth,
Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline
and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman,
Jacob}"
:year: "{2022}"
:month: "{jan}"
:journal: "{Scientific Data}"
:volume: "{9}"
:number: "{1}"
:pages: "{27}"
:publisher: "{Nature Publishing Group}"
:issn: "{2052-4463}"
:doi: "{10.1038/s41597-022-01118-7}"
:abstract: "{Archaeologists increasingly use large radiocarbon databases to model
prehistoric human demography (also termed paleo-demography). Numerous independent
projects, funded over the past decade, have assembled such databases from multiple
regions of the world. These data provide unprecedented potential for comparative
research on human population ecology and the evolution of social-ecological systems
across the Earth. However, these databases have been developed using different
sample selection criteria, which has resulted in interoperability issues for global-scale,
comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental
data. We present a synthetic, global-scale archaeological radiocarbon database
composed of 180,070 radiocarbon dates that have been cleaned according to a standardized
sample selection criteria. This database increases the reusability of archaeological
radiocarbon data and streamlines quality control assessments for various types
of paleo-demographic research. As part of an assessment of data quality, we conduct
two analyses of sampling bias in the global database at multiple scales. This
database is ideal for paleo-demographic research focused on dates-as-data, bayesian
modeling, or summed probability distribution methodologies.}"
:copyright: "{2022 The Author(s)}"
:langid: "{english}"
:keywords: "{Archaeology,Chemistry}"
:month_numeric: "{1}"