Bird et al. 2022

Bibliographic reference Bibliographic reference

  • Bird, D., Miranda, L., Vander Linden, M., Robinson, E., Bocinsky, R. K., Nicholson, C., Capriles, J. M., Finley, J. B., Gayo, E. M., Gil, A., d’Alpoim Guedes, J., Hoggarth, J. A., Kay, A., Loftus, E., Lombardo, U., Mackie, M., Palmisano, A., Solheim, S., Kelly, R. L., & Freeman, J. (2022). P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates. Scientific Data, 9(1), 27. https://doi.org/10.1038/s41597-022-01118-7 [p3k14c]
@article{p3k14c,
  title = {P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates},
  author = {Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob},
  year = {2022},
  month = {jan},
  journal = {Scientific Data},
  volume = {9},
  number = {1},
  pages = {27},
  publisher = {Nature Publishing Group},
  issn = {2052-4463},
  doi = {10.1038/s41597-022-01118-7},
  abstract = {Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.},
  copyright = {2022 The Author(s)},
  langid = {english},
  keywords = {Archaeology,Chemistry},
  month_numeric = {1}
}
[{"bibtex_key":"p3k14c","bibtex_type":"article","title":"{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}","author":"{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob}","year":"{2022}","month":"{jan}","journal":"{Scientific Data}","volume":"{9}","number":"{1}","pages":"{27}","publisher":"{Nature Publishing Group}","issn":"{2052-4463}","doi":"{10.1038/s41597-022-01118-7}","abstract":"{Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.}","copyright":"{2022 The Author(s)}","langid":"{english}","keywords":"{Archaeology,Chemistry}","month_numeric":"{1}"}]
---
- :bibtex_key: p3k14c
  :bibtex_type: :article
  :title: "{P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}"
  :author: "{Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick
    and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, José M. and Finley, Judson
    Byrd and Gayo, Eugenia M. and Gil, Adolfo and d’Alpoim Guedes, Jade and Hoggarth,
    Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline
    and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman,
    Jacob}"
  :year: "{2022}"
  :month: "{jan}"
  :journal: "{Scientific Data}"
  :volume: "{9}"
  :number: "{1}"
  :pages: "{27}"
  :publisher: "{Nature Publishing Group}"
  :issn: "{2052-4463}"
  :doi: "{10.1038/s41597-022-01118-7}"
  :abstract: "{Archaeologists increasingly use large radiocarbon databases to model
    prehistoric human demography (also termed paleo-demography). Numerous independent
    projects, funded over the past decade, have assembled such databases from multiple
    regions of the world. These data provide unprecedented potential for comparative
    research on human population ecology and the evolution of social-ecological systems
    across the Earth. However, these databases have been developed using different
    sample selection criteria, which has resulted in interoperability issues for global-scale,
    comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental
    data. We present a synthetic, global-scale archaeological radiocarbon database
    composed of 180,070 radiocarbon dates that have been cleaned according to a standardized
    sample selection criteria. This database increases the reusability of archaeological
    radiocarbon data and streamlines quality control assessments for various types
    of paleo-demographic research. As part of an assessment of data quality, we conduct
    two analyses of sampling bias in the global database at multiple scales. This
    database is ideal for paleo-demographic research focused on dates-as-data, bayesian
    modeling, or summed probability distribution methodologies.}"
  :copyright: "{2022 The Author(s)}"
  :langid: "{english}"
  :keywords: "{Archaeology,Chemistry}"
  :month_numeric: "{1}"

Citing records

There are 179689 records in XRONOS that cite this reference.

radiocarbon date Radiocarbon dates (179689)

Site Lab ID Context Material Taxon Method Uncalibrated age Calibrated age References
In Sakane 70UQ NA NA 7930±145 BP ManningTimpson2014 Bird et al. 2022
In Sakane 71UQ NA NA 7535±135 BP ManningTimpson2014 Bird et al. 2022
In Sakane 72UQ NA NA 7235±135 BP ManningTimpson2014 Bird et al. 2022
In Sakane 73UQ NA NA 6760±130 BP ManningTimpson2014 Bird et al. 2022
In Sakane 74UQ NA NA 6010±120 BP ManningTimpson2014 Bird et al. 2022
In Sakane 75UQ NA NA 6000±110 BP ManningTimpson2014 Bird et al. 2022
In Sakane 76UQ NA NA 5820±150 BP ManningTimpson2014 Bird et al. 2022
In Sakane 77UQ NA NA 5370±100 BP ManningTimpson2014 Bird et al. 2022
In Sakane 78UQ NA NA 4710±110 BP ManningTimpson2014 Bird et al. 2022
In Sakane 79UQ NA NA 4400±105 BP ManningTimpson2014 Bird et al. 2022
In Kousamene 80UQ NA NA 8990±200 BP ManningTimpson2014 Bird et al. 2022
In Kousamene 81UQ NA NA 4880±110 BP ManningTimpson2014 Bird et al. 2022
Ichourad 82UQ NA NA 6165±130 BP ManningTimpson2014 Bird et al. 2022
Tintan necropole 84Gif NA NA 5520±100 BP ManningTimpson2014 Bird et al. 2022
Balma de la Roureda 8649 X-404 astrilla de hueso NA NA 21255±350 BP Garcia Diez M. & Cebria I Escuer A. 2003. Zephyrus 56: 39-48. Bird et al. 2022
Oued Tassouli 8Gif NA NA 9480±90 BP ManningTimpson2014 Bird et al. 2022
Puente Quilo A-11222 charcoal NA NA 4820±85 BP Ocampo & Rivas 2004 Bird et al. 2022
Puente Quilo A-11223 charcoal NA NA 5030±120 BP Ocampo & Rivas 2004 Bird et al. 2022
Puente Quilo A-11224 charcoal NA NA 4305±155 BP Ocampo & Rivas 2004 Bird et al. 2022
Puente Quilo A-11225 charcoal NA NA 4905±105 BP Ocampo & Rivas 2004 Bird et al. 2022

Metadata

Record created in XRONOS on 2022-12-02 00:40:38 UTC. Last updated on 2023-03-23 09:29:26 UTC. See changelog for details.
Contributors: XRONOS development team

Changelog

Bibtex:
@Misc{p3k14c, url = {https://www.p3k14c.org/}, note = {Bird, D., Miranda, L., Vander Linden, M. et al. p3k14c, a synthetic global database of archaeological radiocarbon dates. Sci Data 9, 27 (2022). https://doi.org/10.1038/s41597-022-01118-7} } → @article{p3k14c, title = {P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates}, author = {Bird, Darcy and Miranda, Lux and Vander Linden, Marc and Robinson, Erick and Bocinsky, R. Kyle and Nicholson, Chris and Capriles, Jos{\'e} M. and Finley, Judson Byrd and Gayo, Eugenia M. and Gil, Adolfo and {d'Alpoim Guedes}, Jade and Hoggarth, Julie A. and Kay, Andrea and Loftus, Emma and Lombardo, Umberto and Mackie, Madeline and Palmisano, Alessio and Solheim, Steinar and Kelly, Robert L. and Freeman, Jacob}, year = {2022}, month = jan, journal = {Scientific Data}, volume = {9}, number = {1}, pages = {27}, publisher = {{Nature Publishing Group}}, issn = {2052-4463}, doi = {10.1038/s41597-022-01118-7}, abstract = {Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.}, copyright = {2022 The Author(s)}, langid = {english}, keywords = {Archaeology,Chemistry}, }